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NOTATION

Linear Dimensions & Areas

C Chord of blade

C Chord of wing

Diameter of rotor

C Rotor blade flapping hinge offset

I L,r' Distances defined in Figure 3

r Radial distance along rotor blade

R Rotor radius

5 Wing Area

)4)7 Z 7- Non-dimensionalized distances in ' Y- 7
U directions (See list of subscripts below)

XC Distance of center of pressure of wing behind rotor

bl 7 Distances inX-Y-Z directions (See list of subscriptsbelow)

Angular Measurement

? Rotor angle of attack

O Wing angle of attack

Fuselage angle of attack

S Angle defined in Figure 8

6 Angle of downwash due to wing

Effective blade pitch at 0.75 R

04 Aircraft pitch attitude

Wing incidence measured from fuselage reference line

4 Angle between lift vector with and without slipstream

(See Figure 1)

) Blade azimuth position
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FORCES AND MOMENTS

0 N H-force coefficient

Q-T Thrust coefficient

CF Centrifugal force per blade

S Blade sectional profile drag coefficient

F Force (See list of subscripts below)

Lift (See list of subscripts below)

M Moment (See list of subscripts below)

T .tahrust

p Non-dimensional velocity V

COEFFICIENTS AND CONSTANTS

01 Rotor blade lift curve slope

Wing Iift curve slope without slipstream; Rotor constant
flapping

(),j Rotor longitudinal flapping

AR Wing aspect ratio

fQ-,E Quartic coeftficients (Equation .194)

b, Rotor lateral flapping

CNon-dimensional coefficient (See list of subscripts below)

K" Aspect-rmtio-dependent constant

1Constant defined by equation 1-16

Inf.Low,: rtio defined by eqluation 11

Constant defined on page .8



> S Inflow based on induced velocity in slipstream

PVelocity ratio defined by equation 12
' Defined by equation 4

Blade solidity factor -
WTA

Locke' s Number i P&--I,

VELOCITIES

U- Body axis system longitudinal velocity

W" Induced velocity

V Free stream velocity along flight path

/ Resultant velocity at wing

v.1 Body axis system vertical velocity

Rotor rotational velocity

A Velocity ratio

MISCELANMUS PARAMETERS

Number of blades

At

40 Symbol for "a function of"

k Moment of inertia of aircraft about Y-axis

-Yn Aircraft mass

NNumber of rotors

CDensity of air
Characteristic time (See Figure 19)

VAircralt weight

To Blade mom.ent of inertia about flapping hinge
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SUBSCRIPTS

Aerodynamic

L Drag

F Fuselage

Gravity

Hub

Inertia

LLift

O Initial

Rotor

S Slipstream, static

Tail

Wing

DERIVATIVE CONVENTIONS

indicates the derivative with respect to with Ci

and C-T both held constant.

2. indicates the derivative with respect to V with

only C% held constant and C-T free to vary. This is re-

lated to derivatives of the first type by a relation of the form
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3. C indicates the derivative with respect to V with both Q(

and C T free to vary, e.g.,

& V O CNOJV t-v

In order to find 1 some flight condition must be specified.

For instance, if it is specified that the force in the - direction

be held constant, then

and

a. 0( Z-11



An analysis of the stability characteristics of a tilt-wing VTOL air-

craft is made. The stability derivatives associated with the wing-rotor

combination are estimated on the basis of the assumption that for the purpose

of stability analysis, the forces acting on the wing in the slipstream can

be assumed to depend on the vector sum of the free-stream velocity and the

induced velocity of the rotor. The wing derivatives are presented in the

form of general charts which can be used for the evaluat:ion of the deriva-,

tives for any w:ingrotor combination. Numerical calculations are made for

a typical tilt-wing VTOL (the Vertol 76) transition. From these calcu-

lations a curve is obtained showing the variation of the stability character-

istics with wing tilt angle.o On the basis of these numerical results and

the general expressions for -the derivatives, an extensive discussion is

given concerning the effects of important physical parameters on values of

the derivatives and of 'the effect of these derivatives on the stability

characteristics of the aircraft.
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TNTRODUCTION

It is probably well to set forth at the offset -the purpose of this

investigation. It is not to analyze the stability of a tilt.-wing VTOL

aircraft but rather to study the factors which effect the stability

characteristics. In order to obtain useful information of this type

it is necessary to simplify the governing equations 'to such a point

that the stability characteristics' e.g. the periods and damping ratios

or time constants of the various modes of motion as a function of the

tilt angle, can only be relied upon to give a rather qualitative picture

of the aircrafts response to a disturbance. Certainly, at the present

time, it is necessary to resort to experimental means if one wishes to

obtain accurate information on the stability characteristics of a pro-

posed design.

There are numerous reasons why the stability prediction problem

is more difficult than the similar problem for low speed, conventional

aircraft. Probably two of the most difficult problems. however, are

due to the high velocity of the slipstream at low fo:ward speeds and

to the rotation of the wing during conversion. The effect of the former

will be the main subject of the present report end only little will be

said about the ltter, albeit it could easily prove to be of equal

importance.

The scope of -this report is quite limited. Consideration will

be given only to VTOL aircraft of the tilt.-ing type with articulated

rotors fixed rigidly to 'the wing. The results obtained should, however,

give some insight into the characteristics of similar 'types of VTOL

13



such as the tilt-wing with conventional propellers or the fixed-wing,

tilting-rotor aircraft. Al.so, only the longitudinal dynamics will be

considered although the lateral dynamics present similar problems and

are equally worthy of consideration.

This investigation will be concerned only with stability of VTOL

aircraft. The quality sought by aircraft designers, which is usually

called "flying qualities" is not the same thing as stability although

it bears a definite relation to it. Thus, for instance an airplane

can be unstable in the mathematical sense, i.e. have a response to an

initially small disturbance which grows without limit as time increases,

and still have satisfactory flying qualities. This occurs in a con-

ventional airc:raft with a very long period but sli htj unstable mode or

for the helicopter which has a slightly unstable short period mode near

the hovering flight condition, Flying qualities are also intimately

involved with the concept of cont:rol since an aircraft could be so

stable as to be impossible to control. Although these other aspects of

aircraft flying qu ali'ties are equally important, we will be concerned

here only with mathematical stability.

Consideration of aircraft stability in 'the above sense ultimately

reduces 'to the consideration. of the stability of solutions of a set

of differential equations in the neighborhood of some equilibrium

point. The degree of difficulty encountered in determining whether

or not a system of differential e'..uations possesses an unstable solution

depends on the nature of the e.quations obtained. The types of systems

which may be obtained are:
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1. Linear with constant coefficients.

2. Linear with time varying coefficients.

3. Non-linear

For systems of equations of the first type the determination of

the stability is easily reduced to an algebraic problem. Although

in the present report only linear systems with constant coefficients

are obtained, a more accurate analysis of the VTOL conversion ma-

neuver could easily lead to equations of either of the other types.

Thus, in the present discussion the question asked is: If the ro-

tation of the wing were stopped at any point in the conversion ma-

neuver and the aircraft allowed to come to equilibrium what would be

the stability of this equilibrium point? This is in effect assuming

that the conversion takes place over a very long time interval. In

the practical VTOL aircraft, however, the conversion time may be

relatively short, e.g. less than half a minute, and it would be

reasonable to ask what the effect of this acceleration would be. If

a constant acceleration is assumed, the equations which describe a

conversion will be linear with time varying coefficients. General

solutions of systems of equations of this type can not in general

be found although there are methods for obtaining approximate so-

lutions if the coefficients do not vary too rapidly.

In general it is desirable to have more information than just

knowing whether the motion is stable or not. Although it is desira-

ble to have explicit expressions for frequency and damping in terms

of the physical parameters of the aircraf't, this is seldom possible

and even if possible ma, lead to expressions of such complexity that
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the dependence on a particular parameter is difficult to see. In

the case of linear equations with constant coefficients, information

of this type is easily obtained by means of the root locus method.

Using this method the movement of the roots of the characteristic

equation in the complex plane with variation of any desired parameter

is easily found.

The main problem in determining the stability characteristics

for VTOL aircraft is the prediction of the forces and moments acting

on that section of the aircraft which is in the slipstream of the

rotor or propeller and in particular those acting on the wing. In

most VTOL with tilting rotors, nearly the entire wing is in the

slipstream as well as part of the fuselage and the tail over a large

part of the conversion,

The problem of predicting the forces and moments on an airfoil

in a slipstream has been considered by a number of authors (Ref. 1,

2, 3, 4., 5 ).

Koning considered the effect of the propeller slipstream on the

wing forces and moments. His theory is however, valid when the in-

duced velocity of the propeller is small compared to the free stream

velocity and thus can not be of any use for VTOL aircraft where the

free stream velocity may be zero or very small and the induced ve-

locity quite large.

The more recent analysis of Rethorst was particularly carried

out for VTOL aircraft and is hence not limited by velocity ratio.

These calculations were carried out for a large number of wing plan-

forms (Ref. 6) and may be useful in selecting optimum planforms for
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a specific design. An adequate comparison of these results with ex-

periment is not possible due to the lack of experimental work in this

area. Some comparison is made in Reference 21.

The experimental work of Stuper is quite extensive but was un-

fortunately done before the interest in VTOL aircraft and hence does

not include tests at high induced velocities.

In the experimental work of Brenkmann it is interesting to note

the effect of the slipstream rotation. For the condition of small

angle of attack and large induced velocity the lift coefficient be-

comes negative over part of the span. It is concluded by Brenkmann

that this effect on the total lift of the span is small since the in-

crease over one half of the span and the decrease over the other aver-

age out to that given by an average angle of attack. This conclusion

is probably valid as long as the wing is not stalled. If part of the

wing is stalled, the actual lift may be considerably less than that

based on an average angle of attack. Since present tilt-wing VTOL

aircraft often operate with the wing at very high angles of attack,

this could lead to considerable error in computing the lift on the

wing. See Reference 20 for a more complete discussion of this effect.

Brenkmann also found that the slipstream over the entire wing had a

destalling effect which gave a significant additional lift.

In order to make a qualitative analysis of the effects of the

slipstream on the stability characteristic, it is almost essential to

have a fairly simple expression for the lift on the wing in the slip-

stream which accounts for the most important effects. In order to ob-

tain an expression of sufficient simplicity to be useful for stability
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analysis purposes, it is necessary to neglect many of the effects

which might be important.

For the purpose of the present investigation the following method

of estimating the wing forces and moments and their derivatives will

be employed:

We assume that the wing forces are dependent on an "effective"

angle of attack and a "resultant" velocity which are determined by

the vector sum of the free stream and rotor induced velocities. The

value for the induced velocity to be used is not that at the rotor disc

but somewhat greater than this. Simple momentum theory shows that the

induced velocity far downstream must be twice that at the rotor disc,

and in fact experimental evidence (Ref. 7) shows that a velocity nearly

twice that at the rotor disc is reached within a very short (less than

one diameter) distance behind it. Thus in computing the general ex-

pressions for the resultant velocity and its derivatives we take the

induced velocity to be A where > is a constant between

one and two and v is the induced velocity at the rotor disc.

The lift curve slope to be used in computing the lift is obtained

from the work of Smelt and Davies (Ref. 8). These investigators derive

a correction to the power off lift curveo slope which is dependent on

the thrust coefficient and the aspect ratio of that portion of the wing

which is covered by the slipstream. This correction is based on the

following considerations- Since the effect of the rotor will be to

increase the velocity over that part of the -wing in its wake, the lift

will be increased over this portion of the wing and hence there will

be a spanwise change in the lift at the outer edge of the rotor which
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will give rise to a trailing vortex. The effect of this vortex will

be to decrease the angle of attack of the airfoil. If the aspect

ratio of that portion of the wing in the slipstream is very large the

effect of the trailing vortices will be negligible and the lift will

simply be proportional to the resultant dynamic pressure and the

effective angle of attack of the airfoil. For smaller values of the

aspect ratio, however, the trailing vortices will decrease the angle

of attack, the magnitude of this reduction depending on the strength

of the vortex which will be dependent on the magnitude of the spanwise

discontinuity in the lift which is in turn proportional to the induced

velocity or the thrust coefficient. Smelt and Davies simply compute

the two limiting cases and include a constant which depends on the

aspect ratio and is to be found by some experimental means. Using the

procedure outlined above, the lift on the wing can then be expressed as,

I 1- 113(1)

where the above symbols have the following meaning.

V/ VV~N (2)

i is the free stream velocity and N1 the induced velocity (See

Fig. 1).

0c -slope of the lift curve of the wing section without the
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presence of the slipstream.

5 - area of wing in slipstream.

where -,p -distance of center of pressure of wing behind rotors.

K aspect-ratio-dependent constant mentioned above having value

between 0 ( AR -- c*O ) and 1 ( AR- 0 ).

AI as mentioned above has value between 1 and 2.

The particular values of these two constants in an alalysis are

to be determined in one of the following ways:

1. Experiment; either from models or full scale aircraft of the

configuration being analyzed or by extrapolation from experimental

data obtained from similar wing-rotor arrangements.

2. Rough estimates based on physical reasoning, e.g. if on the

particular aircraft under consideration, the wing center of pressure

was greater than one rotor diameter behind the rotor, it would be

reasonable to assume that >1 could be considered to have the value

2.

3. Choose values so as to give a best possible fit to more

accurate theoretical calculations if available.

The value of W , the velocity induced at the rotor disc, is ob-

tained by equating the thrust of the rotor to the change of momentum

of the slipstream, i.e.

\(5)
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It is assumed here that the mass flow is that flowing through a

stream tube of the same diameter as the rotor disc at the resultant

velocity.

The process of taking the required derivatives of the resultant

velocity based on the above assumptions becomes quite laborious. How-

ever, it was found that they could be computed in a general manner

and expressed in the form of charts so that their values can be found

inmediately if all the trim conditions are known.

An approximate expression for the resultant velocity can be found,

which under certain conditions introduces only a small amount of error,

by assuming that the thrust can be equated to the change in momentum

of the fluid based on only the component of the freestream velocity

which is normal to the rotor plane. This expression leads to large

errors when the angle of attack of the rotor plane is small at appreci-

able forward velocities. Also the error involved increases in inverse

proportion to the disc loading. Thus the assumption leads to the

greatest error for "helicopter-like" configurations and to the least

error for "airplane-like" configurations.

The remainder to this report will be conducted in the following

manner:

First, we will derive the controls -fixed, small disturbance e-

quations for the longitudinal modes of motion. These equations will

be applied to a sample aircraft (Vertol model 76) and the roots of

the characteristic equation obtained for a number of tilt angles

through the conversion. The effect of the various stability deriva-

tives on these roots will be determined by means of the root locus
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method. Then all of the important derivatives will be investigated

to see the relative magnitudes of the contributions of the various

parts of the aircraft such as the tail, rotor, wing, etc. and how these

are influenced by changes in the various physical parameters of the

aircraft such as the lift-curve slope, center of gravity location,

tail size, etc.

Finally, an attempt Vill be made to draw some general conclusions

from the important results of the investigation and to outline some of

the important areas which will have to be investigated further either

analytically or experimentally in order to obtain a sufficient under-

standing of VTOL dynamics to enable the designer to proceed system-

atically to the optimum design.

The dynamics of VTOL aircraft have been considered previously in

References 18, 19, and 20. The approach in 19 and 20 is essentially

experimental. The analysis given in Reference 18 is somewhat sLuilar

to that given here although little consideration was given in that

report to the effects of the various physical parameters on the dy-

namic characteristics of the aircraft.

I
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ANALYS IS

Assumptions

We now proceed to develop equations for the longitudinal motion

of a tilt-wing VTOL aircraft. As the general development of small

disturbance equations of aircraft has been given many times before

(See e.g. Ref. 9), we will be mainly concerned here with those parts

of the development which differ because of the presence of the rotors

and the tilting of the wing. As many simplifying assumptions as

possible will be made so that the important effects of the rotors on

the stability characteristics can be seen without being obscured by the

multitude of small effects which would have to be included to obtain

a precise description of the aircraft's dynamic behavior. Thus we

make the following assumptions:

1. Airframe is a rigid body.

2. There is no coupling between the lateral and longitudinal

modes of motion. This is normally true for conventional aircraft if

all disturbances are sufficiently small, the aircraft is initially

in level flight, and any gyroscopic effects due to the engines are

small enough to be neglected. The only other forces acting on the

VTOL which might give a coupling are the lateral rotor forces and

these cancel for two rotors which rotate in opposite directions.

3. All disturbance quantities are small enough that their products

and squares can be neglected.

4. Aircraft performs a constant altitude conversion and initially

all velocity components are zero except along the X-axis.
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5. The wing tilt angle is fixed daring the analysis as well as

all other controls. This assumption could very well be untenable ex-

cept when the conversion takes place over a long period of time.

6. The rotor satisfies -the following relations:

T

a -- 3

3 914

A: !- A (8)
4- +Iwhere PY is the induced velocity at the rotor; T is the total thrust

produced by both rotors; N the number of rotors; f the radius of the

rotor; .L the angular speed of rotation of the rotor; ( the col-

lective pitch at 0.75 ; the profile drag coefficient of the

blades and C'T, >- and. ,A are defined by:

Ce (9)

.N T RIX. , (O)
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(OP)

where V is the free stream velocity and 0( is defined in Figure 1.

The directions of 'T and H are also defined there. For the deri-

vation of the expressions for (T and see References 10 and

11. A number of terms were dropped from the expressions given in

these books due to the fact that /_ is much less than one for most

tilt-wing configurations. It is also assumed that S1 is constant

in all of the above expressions.

7. All force and moment derivatives are constant at each trim

point.

8. Effects of rotor on wing forces can be described by the ex-

pressions given in the first section of this report. (Expressions 1,

2, and 3).

Non.-dimensionalization

Non-dimensionalizing the equations of motion for this type of

VTOL aircraft does not lead to the degree of simplification found in

the case of conventional aircraft. This is due to the fact that the

rotor forces are proportional to the square of the rotor tip speed

rather than the dynamic pressure. When the force equations are di-

vided through by the wing area times the dynamic pressure, the wing

and tail forces are sim.l.ified to the usual lift and drag coefficients;
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the rotor forces, however, are preceded by the factor-- -  -

which remains nearly constant through a transition since LR is

constant and the resultant velocity does not vary much. All of the

force terms are never-the-less made independent of the size of the air-

craft which is probably the most important reason for the non-dimension-

alization. The moment equation was also divided by the wing chord.

Equations of Motion

A body axis system will be used in which the fuselage reference

line is initially horizontal and pointing into the wind. The varia-

bles, however, will be expressed in terms of the familiar wind axes

variables, i.e. \/ , (4 ) G. instead of U. , W, Gf where

is the magnitude of the free stream velocity, 0(. is the angle be-

tween the fuselage reference line and the free stream, ( is the

angle between the horizontal and the fuselage reference line, LL and

1)kT' are the velocity components along the body axes. For hovering

flight LL and WT must be retained. The relations between these

variables are:

US (13)

The inertia forces for the longitudinal motion only are then:
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(16)

For the derivation of these expressions see e.g. Reference 9.

Using the relation --qo+ -'± Lw ( , are defined

in Figure 1), we obtain:

/C= e- - ) -tW] (17)

-~ 'i.Kctzd (A-LW)-V (d.-kYNw)(;G (18)

<; F - since L . is constant at each trim point.

The forces acting on the aircraft due to gravity are:

Fc - o(20)

_ -- , .d e . (21)

0 (22)

From Figure 2 we see that the aerodynamic forces are:

F±,= F , + FY + F e + F w -t F- F = (23)

C-z-= FzS t J- R +" F7ZT " Et'Fz.w -+ FZF (24)
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mLo -L Yz. r-a-F ,- N I RFz.jR -j3FA

-XTF-T 7--TVx T -", - _,/

-'I r - ± - 7-, :+ ,j + M-ic + ± u.-, (25)

(The subscripts S R , ,T ,W, F indicate slipsteam, rotor, tail,

wing, and fuselage respectively; see Figure 2) where,

Ds :55%, --O,,(x w +.) L~ -s C& ( C - 't,,,,) (26)
F;F=D ( L)L c(c)w- )(26)

c 2 , (27)

:'7-- -D +(31)

F- H c. L (32)

F-- L T L n,-.,.- - - _O r o_ ( L .,-j (33)

Fz. W , . (,x - ,- w D \4 - L W (34) "
FZ LF ,A (-, -W)- v) c&,& (0( -Lw) (35)
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The distances XA, X R -7,A  '7 R are not constant but depend

on the angle of tilt 1, . They are given by the expressions:

X[ -Xc ( i 9  ep U (36)

-) (39)

where c, r p are constants and are, shown in

Figure 3. These distances have also been computed for various tilt

angles and are shown plotted as a function of 6v in Figure 4.

Thus the sum of the forces and moments acting on the aircraft

may be expressed:

F, = Fx T Fx T t Fx w t. A VF - (4o)

F= FzTt z t ±Fz 5+VZR - -FW (41)

t "i".-T -TF.T XR' . R

+ XF FZ- F 4-F)giF + Me t- M > MH cx (142)
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Since we are considering only the longitudinal equations of motion

with controls fixed, we have three degrees of freedom. The three vari-

ables will be taken as V , P( . As already noted, derivatives

with respect to CA are the same as with respect to C •

If we expand all the forces in Taylor series, retain only the

first order terms, neglect products of the perturbation quantities,

and write for simplicity the variables themselves for their pertur-

bations, we obtain the equations in the form given below. The process

of taking the first term of the Taylor series for the inertia and

gravity forces along with the aerodynamic forces eliminates the necessi-

ty of subtracting the steady state solution from the perturbation e-

quations and also gives rise to the convenient symbols such as CQm6

for the non-dimensional form of the moment of inertia about the Y-axis.

The derivatives are constant for a given trim condition but vary with

the variable LW The perturbation equations are thus given by:

0_ __ (44~)

(ko

Evaluation of stability derivatives

Due to the influence of the induced velocity on the magnitude

and direction of the resultant velocity at the wing section in the

slipstream, most of the stability derivatives will be functions of

30



the rotor thrust T In order to separate the effect of the change

due to rotor thrust variation from that due to variation with the

thrust held constant, the derivatives will be taken in the following

manner:

Z) -')k9 IVC t _ ~ CT (46)

OA c v,CT O(' 6\

Where C T is the thrust coefficient defined by,

T.- 10 N j R2 (R) CTr (48)

and the subscripts beside the vertical line indicate the variable or

variables held constant while taking the derivative. The two deriva-

tives "-jI and I are obtained in the following

manner:

The expression for CTFl is,

) _ EL(4i9)d, 3
V.

which is sufficiently accurate as long as 
V)A =  is small

compared to unity; which is nearly always true for VTOL aircraft. The

definition of is,

-.Ln -- (V, T) (50)
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Thus.

or,

Tlv (51)

A, _bCTI '*KO

In a similar manner.,

4 m (52)

4 _

The derivatives can be calculated and plotted in a

general manner so that they may be applied to any rotor at any oper-

ating condition. This has been done in Reference 12. Expressions

for and plots of these derivatives are given in .Appendix A.

Thus we see that expressions for the derivatives of the

- forces and Y-moments with respect to the three variables 0(

V/ , ~e- are needed. These will be discussed in two sections;

first the static derivatives and then the dynamic derivatives.

Static derivatives

The static derivatives which are reraired are the derivatives

of the forces T" and .': and the moment M with respect to

velocity, angle of attack and pitch angle. These derivatives in
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Z)Cx~7o byxL+--1--l

+t

t - I1 (56.)

T _c (X + q A (55)
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e ,, - p V ,'/,,- (58)

The derivatives of the moment about the Y-axis with respect to

V and c are given below. The lower case letters ) , 7- ,

are the various distances given previously non-dimensionalized with

respect to the wing chorL.

= - - -

(59)

f'S VVaC lN

t7-pbe C + - -nf t c a~

(60)
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We must now find expressions for the derivatives of the forces

acting on the various components of the aircraft with respect to the

free stream velocity and angle of attack. We note that the deriva-

tives of the inertia and gravity forces are zero since each term of

the inertia forces contains a perturbation quantity which is zero

when evaluated at the trim condition and the gravity forces do not

contain the variables (A and V . The fuselage force derivatives

can be carried no further since there is no theoretical method availa-

ble for treating the odd shaped fuselages which are likely to be

present on VTOL aircraft. These will normally have to be found by a

wind tunnel test on a model unless the fuselage is similar to that of

a conventional aircraft, in which case it can be estimated by analyti-

cal means. However, if part of the fuselage is in the wake of the

rotor, any type of analytical estimate will probably be very difficult.

The expressions for the various forces acting on the aircraft in terms

of the appropriate velocities and coefficients are:

- 7 - S Vf a (6co)

PS VR2 C S (62)

DW' ~, SW V- CO,/ (63)

K' 4 'SpwV Ci (64)

I S- V COT (65)

K' - 'ST VT2 CL Sw (66)

T= TiR ae) CT (67)

Y P a: (-o-R)I CH (68)
35



Substituting these expressions into the equations and carrying

out the differentiation, we easily obtain the following expressions

for the required derivatives:

Sb R Z' C L C, (69)

R ZF/--3

-VS \/ L -

-' &571 \1 -07Tb

-- 'R ]D 36 (72)

V czls6



bc~e~wSw V c (7

2)0-w = .- -CW (79)

6i C' \CLW) (80)

V - (SR boQ

ix {[CL lot

+ T CIe teC~ (81)~~1 L /44

5S0TT ZR

(k-T-O -~ C[Qr4E (82)~E1
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(~ r.C~r~ 6% C- cem6 (84~)

The only point which might need some explanation in obtaining

these expressions is the evaluation of the derivatives ZT t_ ) 0(

The angle C_ T is obtained from Figure 2 and is,

0('-= qO-+0 - w-t- -'T- (85)

T h u s , Oe = - 2 --- 3

LO= _ =_ (87)

since the downwash at the tail is a function of the angle of attack

of the wing. The angle of attack of the wing is,

qo -- I (88)

Thus, (89)

__ - I - (90)

This finally gives,

_ _ (91)

The only derivatives which we have left to evaluate in terms of

known physical parameters are derivatives of , , 'P ,

CDs , C(2'S , VT with respect to Q( , V . We will now con-

sider the evaluation of these derivatives.
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In order to find the C" derivatives we need an expression for

CH in terms of CT ,/A This is obtained from the ex-

pression given previously by substituting the expressions for Cl 1, b ,

and 0,o given in Reference 11 into it. The result is:

OJT ~ 4A/ OJ

Taking the derivative of this expression with respect to Q( , 'I ,

CT ) and neglecting powers of /AA greater than or equal to two

as compared with unity, we obtain the following:

:4QR ae2Nbc 3 . F A-f ;_,(a r(-

- 7rFA~ (94)

AA -W T -A ) (95)
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The derivatives L and ___ are then obtained from,

DCO (97)

-W -Iv-br aCT (98)V, -T ZCT(0

The CT derivatives were given previously.

The values of the resultant velocity Vg and the angle between

the resultant and free stream velocities, ) , deped upon the value

of the induced velocity of the rotor. Simple momentum considerations

show that the induced velocity far downstream approaches a value twice

that at the rotor plane in the absence of dissipation. Since experi-

memtal evidence show (Se Ref. 7) Us* the i ce.d wIOCity appMChI

a value twice that at the disc at a rather short distance behind the

disc, using the induced velocity at the disc to compute the resultant

velocity acting on an airfoil behind the disc could lead to consider-

able error. In order to account for this effect we will use for the

induced velocity the value KT- where may have any value

between 1 and 2 to be chosen later and k- is the value of the in-

duced velocity at the disc which is given by:

T 
'_99_
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Consideration of Figure 1 shows that the resultant velocity is

given by:

vp a= D r v (.- A)11 -[ -.)

which defines S and f Thus,

VR= D-R S.I, (101)

The relation between NS and is,

XS (102)

Taking the derivatives of VR with respect to cQ fA)& V/ R

and C-, , we obtain the following expressions:

(.I//A,< (103)

T- I O'z 1) 2)CT

~ ~ -Ck46A (105)

Using the charts of Reference 12 (See Appendix A) for and

its derivatives, we may plot the derivatives of \/R in general charts

for a given value of N This has been done for the two extreme

values of and the results are shown in Figure 5. It may be

41



noted that in some cases the charts for the two different values of

differ considerably. Using these charts with the trim conditions

we easily evaluate the derivatives -4 and a n

from the expressions:

~j~pi(106)

-V V *V) CT~ +ObV (,V - L (107)

From Figure 1, 4 may be expressed as,

>~ C4~O((108)

Taking the derivatives of this expression with respect to k ,

and CT we obtain the expressions:

10)

j (111)

42



The derivatives were also plotted in the form of charts and are

shown in Figure 6. All of the derivatives are functions of the parame-

ter, 7 AZk and Q where O - is the

value of for V 0 . Also included with these charts are

charts giving VR , , , \ and the derivatives of the

induced velocity 3Y-

Using these charts and the trim conditions, one can easily obtain

the derivatives cR ' IV 7 1f

the expressions:

(112)

b4F O (114)

As mentioned previously, the lift coefficient of the wing in the

slipstream is represented by the expression,

1(116)
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where 0 -,L is the lift curve slope of the airfoil for the power-off

condition, i.e. for kY= 0 in the above expression.

Thus,

Z____ 01 C. (117)

and since,

we obtain,

1I (118)

giving for the expression,

IV kY)) (119)

An estimate of the magnitude of the second term in the expression for

ac shows that it is much smaller than the first term and

thus we take,

C G-0(120)

In a similar way we find,

The ODS derivatives are simply given by:

?C ~C& (122)
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In order to make an estimate of V7 and its derivatives, two

separate cases must be considered. The first is for the tail not in

the slipstream. This case will be valid for hovering and all high

tilt angles up to some angle which will have to be determined from

the geometry of a particular tail-rotor arrangement. Although the

rotor disturbs the flow somewhat even outside of the slipstream, the

disturbance is quite small (See Ref. 13), and can probably be neg-

lected. For this case then we have,

VTyVC)

When the tail is in the slipstream the velocity can as a first

approximation be taken as VR computed for and the deriva-

tives are those given previously for /

We will now consider the derivatives of the rotor pitching moment.

In order to do this we must first have an expression for the pitching

moment acting on the aircraft due to the rotor. This expression is

obtained in the following analysis:

Figure 7 shows the forces acting at the flapping hinge which may

cause a pitching moment if offset hinges are present. If the angle

is small, the resultant force on the blade is approximately equal to

the centrifugal force and we may approximate the vertical force by,

Fz< (124)

where,
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The moment acting at the hub is thus approximately,

~ C2F(3e(126)

where e is the amount of hinge offset. The pitching moment about

the Y-axis is then,

M 1 V = M (127)

We are only interested in the value obtained by averaging this ex-

pression over the angle 4 This is for 6 blades,

b (128)

The centrifugal force is,

OCF Z? fo r--T r r = Z s (129)

where M S is the static moment. Thus,

M O . (130)

For small

3A E/ (131)

A more complete analysis of this moment valid for any and

is given in Reference 10.
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The required derivatives are given by,

CHC 2)y.Fi(= 'CT+ 8)" F j 2C 0 (132)
Z)V 0 27 ac-r-57

)HC = b "C D " --*CT2G (133)
-~ o T -ZCT

The terms on the right are easily obtained from the above expression

for the moment as,

bcv)T( , F C~~ j (134)

~CT (~ 3 V(135)

where, = N (137)
p Sc

Dynamic Derivatives

Probably the most important dynamic derivatives are those which

arise due to a pitch rate, or the derivatives. Contributions

to these, derivatives arise from the tail and the rotors. There is

also a small contribution due to the min wing but this is usually
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negligible since the wing is so near the center of gravity of the air-

craft. The damping due to the offset hinges of the rotor is very im-

portant since it does not depend upon the free stream velocity and

hence provides damping while the aircraft is hovering.

Taking the derivatives of the moment equation with respect to

9O we obtain,

The force derivatives appearing in this expression are given by,

/W 22 10
W,~6Lw +L(39

_ _ _T _ _ _ _ _ _) ( 1 4 0 )

ebR; kw

Since CT is given by the expression,

0-Ti

we obtain,,

OLT (143)
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From Figure 8 we may calculate the change in the velocity at the

rotor plane due to the pitch rate . Using simple trigonometric

relations we find,

It= (14~5)

Since we are w y interested in the product of these two relations we

may multiply them together and simplify considerably the resulting ex-

pression. Thus,

S7 AIY (146)

Using the double angle relations this is readily seen to reduce to,

ZPXR - 7--P (l"r

Expression for the distances in the above expression were given

earlier.

The expression for in terms of then becomes,

SIR 
(14)
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and,

Thus,

o~ .Q~o~(150)

Using the expression given in Reference 11 for CH ,

90 13 - - T.I ~It

we can obtain an expression for The parameters X
C , [ change with pitch rate. Thus,

11 'b A, - b (152)

Taking the derivatives of expression 151 and neglecting the small

terms, we obtain,

(153)

_ (154)

The derivative Is just the rotor lag,
bm

G-!Q~ OL (156)
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where

The last two terms of are found to be negligible. (For

derivation of this expression see Ref. i0) was evaluated be-

fore. From Fig. 8 we see that,

fi (158)
_KLR

Combining these expressions we obtain,

The derivation of this expression was also carried out using the more

accurate expression of Ref. 10 and the additional terms obtained were

found to be quite small.

The lift at the tail is given by,

L-r ST V t (.. ; .-T Tr (16o)

When the aircraft is pitching at the rate , the angle of attack

of the tail is,

cWT J.T- + o- o(- LqW VT (161)VT-

Thus,

Ss /T (3-T Q *-'T .(162)

Also, V. C O~ T (163)
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We find the contribution due to the tail fan in the following manner,

From Figure 9 ye see that,
"4- 'TY R 2. , , s r)-. -

Then,

= k (167)

Thus,

LT-X -- 4 ~ (168)

The pitching moment derivative is computed in the

Elff

following manner :

The expression for the moment was given earlier as,

= t4b Ms 2 zcL,

Thus,
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The derivative of the X-fore equation with respect to p is

given by,

= pve b psVe v'
a V '2 V et (170)

These terms have been evaluated previously. The derivative of the

Z-force equation with respect to is likewise,

M _p' + )%F7 (171)

These terms were also evaluated while finding the moment derivatives.

The derivative CM
From equation 42 we obtain,

C__- M 1 _ _ ' (172)

where Ixt is the moment of inertia of the aircraft about the Y-axis.

This is not constant but varies with the wing tilt angle A- t. How-

ever, the amount of variation is quite small and may usually be neg-

lected.

Derivatives with respect to V

__ a___x A , C (173)

__1 =__ (174)

-, - ,, (175)
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Derivatives with respect to rate of change of angle of attack

N-i-- - -5 vVc( L V C -a

- "0 -- (176)

2)C (177)

-I T (178)

These derivatives arise due to the fact that there is a time lag

between a change in the angle o2 and its effect on the downwash angle

at the tail 6 This time lag is the amount of time required for

the flow to move from the wing to the tail and is given approximately by,

_ .T . The contribution to the angle of attack of theVT
tail due to this effect is then,

bE At- . T (179)

and the angle of attack of the tail is,

dT= (1--80)- ,,-. ( -

The derivative of this with respect to LX is,

-. !- (i81)

The derivatives of CLT and C T are given by,

bC -- -+ "-a- )t C&A.6] (182)

54



C7- _- E_ -)'- i (183)

The lift and drag derivatives are,

v", BTT (184)

.:ST V OC - C .- - (185)6G9T 6 (

We may evaluate the derivative of the tail rotor thrust in the

following way,

-IrrP A (SIR). OA 6QTr (186)

The thrust coefficient is given by,

* G- .O(187)
oJL-r ay-0

Considering the collective pitch GT constant, we obtain,

-r .- r (188)

The inflow factor for the tail rotor is,

" T \ITA~ KT - (189)
SLR)-5
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Thus,

So.T (190)

Combining all of the above expressions, we obtain,

L -T - -~t RTCT C&T (QR)

E T SvVT Q5& E (191)'60T

__ __ G-T T \/T CJB

' T - T 14un e](192)

The most important parameters needed in order to evaluate these

expressions are the downwash angle at the tail 6 and its deriva-

tive with respect to angle of attack ( . These derivatives are

very difficult to evaluate with accuracy, since the flow at the

tail is effected considerably by both the wing and the rotor and

the effect of these change with the wing tilt angle Lwv.,
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Evaluation of Coefficients to Stability Quartic

The non-dimensional derivatives developed in the previous section

can be used in place of the dimensional derivatives in equations 43-45

since all of the force derivatives were non-dimensionalized with re-

spect to the same force and all of the moment derivatives with respect

to the same moment. We wish to determine the stability characteristics

of the solutions to this set of homogeneous, linear, constant-coefficient

differential equations. To do this we assume solutions for each of

the variables of the form V V, e ?t , etc. In order for non-

zero solutions to exist for the three constants V , , G, the

determinant of their coefficients must be zero. Thus,
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where the lower subscript indicates the derivative with respect to a

variable with the other variables held constant.

Expansion of this determinant gives a quartic equation in >

These four solutions for A determine the character of the motion

of the aircraft in response to a small disturbance. We write the

quartic in the form,

Expansiot of the above determinant gives the coefficients of

this equation in terms of the stability derivatives. Eliminating

the derivatives C7, e C e, which are zero for

9 f = ' , i.e. for the aircraft initially trimmed level,

we obtain the following expressions for the coefficients:

A C.- .7-11-A(195)

E3 =C~m , .,_eb .. - ,, .. +.G,, C ,- _

-Cm (c;-c.)+ C,, (C7 -C96

,, .:xC . C__,Cx,.) +C'M.

-CXV_0- - Cg 0-. -i -_a__(O C

- C-Z ) (197)
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+ CHoA C~~,Q -90 C~q) + CMV (Q-XO0CX6

07,X0- Cz_ Cxq) (198)

E= Cz (QQv-CO v2 () (199)

The underlined terms are generally smaller than the others and in

many cases can be neglected.

These expressions for the coefficients can be considerably simpli-

fied and made more physically understandable by introducing the con-

cept of the static and maneuver "Margins".

Consider first the airplane in trimmed level flight. If the

velocity is changed by a small amount, the change in the moment about

the Y-axis with the angle of attack free to change but with the re-

striction that constant vertical force be maintained, i.e. CZ.=

is given by the total derivative,

Taking the derivative of the equation,

C . C ,(201)
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we obtain,

-K X d-t C V (202)

Solving this for the total derivative

C6 1 bez(203)

Thus we obtain,

A C bI Z) tj ? (2 4)

or,

This grouping of derivatives is called the static nmrgin, and

the E coefficient can be expressed in terms of it as,

E= ~(5 'v (206)

Now consider the aircraft in a steady pull-up (See Fig. 10).

The change in the moment about the Y-axis due to the rate of rotation

of the aircraft is given by the total derivative,

CCM i - ,C((207)
&9' C' E e_

From Figure 10 we see that the Z-force in a steady pull-up is,

F~ 00 (208)
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and its derivative with respect to 9 is,

- = - M V (209)

60
or in non-dimensional form,

_ V (210.)
PsvRp

This gives a physical picture of the derivative and is seen to

be the first term of the expression obtained previously for this

derivative. The other terms are due to change in the velocity at the

tail and rotor and are usually smaller than the term obtained above.

For C7 ' C ) t . e obtain,

from which we can obtain the total derivative,

.6 c (212)

Thus,

CH _ _. _ (213)
---- 'ov

Multiplying by We obtain,

This group of terms is usually called the maneuver margin and appears

in the 0 coefficient and in the V coefficient.
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If we make these substitutions in the expressions for the coef-

ficients and omit the terms which are small compared to the others,

we obtain the following expressions:

/A C (215)

e- t'~ emC;C~ ~Q cj X, C,-AQ (216)

Q=C (N~-)+ C C (217)

±Qxe01 -ACXG (218)

\~.= C~f~s±1)(219)

Characteristic Equation in Hovering

When the aircraft is hovering the variable (D is no longer

defined since the free stream velocity is zero. The equations can

be considerably simplified due to the fact that the coupling between

the vertical degree of freedom and the other degrees of freedom is

very weak, i.e. small forward velocities or angular rotations do not

cause any appreciable change in the Z-force and small perturbations

in the vertical velocity cause only negligibly small changes in the

X-force and the moment about the Y-axis. Thus the motion can be

approximated by the following two equations:

(Cx + C)V+jQX e C)-)1 0

CM~v -CM ±C > ") > (220)
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Setting the determinant of the coefficients equal to zero gives a

cubic equation in with the following coefficients:

C X C, (221)

D= C-1/Qmb-QHv CY (223)

Calculation of roots to the Quartic and Cubic Eauations for Various

Flight Configurations

In order to evaluate the stability for the various flight con-

figurations it is necessary to have trim conditions at each tilt

angle at which the roots of the characteristic equation are desired.

These have been evaluated with the aid of a digital computer for the

Vertol 76 (Ref. 14), and are shown plotted as a function of Q( and \/

in Figure 11. The velocities on these charts are for a 1:5.2 scale

model. The full scale velocity is thus 2.28 times the velocities on

this scale. Given these conditions, values for the wing and rotor

derivatives are easily obtained by using the charts in the appendix

and these derivatives allow calculation of the required force and

moment derivatives. These calculations were carried out for hovering

and at intervals of 10 degrees down to 15 degrees and also for 7

degrees which is approximately the forward flight angle of attack.
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(In forward flight the wing tilt angle is approximately equal to the

angle of attack.) The values obtained for the derivatives and for

the coefficients of the stability quartic are given in the appendix.

Using these coefficients the quartics were solved and the results

are shown in Figure 12. Values of the various parameters for the

Vertol 76 and the lift curve slope assumed are given in Appendix B.

The values obtained for all of the derivatives and variables at each

of the tilt angles are given in Appendix D.

It should be borne in mind that these calculations were intended

merely to provide a qualitative picture of how the stability changes

while the aircraft moves through transition and consequently they can

not be expected to give accurate values for the period and damping of

the actual aircraft. Inspection of the various contributions to the

coefficients of the quartic allows one to see which are the main terms

and which can usually be neglected.

Approximate Factorization of Quartic

Often much useful information can be obtained by an approximate

factorization of the quartic. This gives an expression for each of

the roots in terms of the stability derivatives. If such an approxi-

mation is sufficiently accurate and results in expressions which are

not too complicated, it will enable one to determine very easily the

effect of any derivative on the quartic roots.

Since the roots which represent the short-period oscillation are

usually much larger than the other two for conventional airplanes, we

assume that an approximation to the short period oscillation can be
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obtained by dropping the last two terms of the quartic. Doing this

and retaining only the largest terms of the first three coefficients,

we obtain the following quadratic:

CNO + o * C (225)

To obtain an approximation to the other two roots we assume a

quadratic of the form OL) - + + 0- , and multiply it times the

short-period approximation. Then, equating coefficients of like

powers of "N , gives five equations relating (3-, b , C , to

known coefficients. Using the first, fourth and fifth of these we

obtain the following expressions for the coefficients of the quad-

ratic which should approximate the remaining roots of the quartic:

o.- Q(226)

-O CQ6CCC'+ 1 X (227)

C- - e (-.) (228)

In the short period approximation the constant term is directly

proportional to (MM) whereas in the second quadratic both the constant

and A terms are inversely proportional to (MM). We thus might

expect that the larger (MM), the better the approximation.

To determine the accuracy of the approximation, these two quad-

ratics were solved for a number of tilt angles and compared with so-

lutions of the complete quartic. This comparison is illustrated in

Figure 13. We see that for the lower tilt angles the approximation
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is fairly good and breaks down when the roots become smaller as would

be expected. We may also note that the approximation did not predict

the increased damping of the 7 degree tilt angle.
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DISCUSSION

Variation of quartic roots with tilt angle

In order to discuss VTOL aircraft stability it is necessary to

know what types of response are considered desirable and also since

the desirable type can not always be attained, we would like to know

what is acceptable.

The stability criterion is most conveniently expressed by speci-

fying the regions on the complex plane into which the roots of the

quartic which determine the nature of the motion should fall. It

is known, of course, that the roots should fall into the left half

plane; however, as is shown by the hovering helicopter, this condi-

tion is not necessary in order that an aircraft be capable of being

flown. An instability similar to that which exists in most hovering

helicopters would, of course, never be tolerated in a conventional

airplane. We thus see that any criterion for desirable or acceptable

stability will depend on the type of aircraft which is being con-

sidered. It is also true, as mentioned before, that handling quali-

ties depend on more than the values of the complex frequencies. The

amount of control available to the pilot is also very important.

Several criteria have recently been established for VTOL handling

qualities by means of simulators (See e.g. Ref. 15). Although such

results will have to be examined more closely by actual flight test,

they do give some indication of the type of response which is accepta-

ble to the pilot. When the VTOL has developed considerable velocity

in the conversion, then handling quality criteria established for
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conventional subsonic aircraft can be used as a basis for establishing

desirable VTOL handling qualities. Some of the results of these two

criteria are shown in Figure 12.

In order to obtain same indication of how the stability charac-

teristics change as the VTOL aircraft goes through a constant altitude

conversion, a sample calculation for a typical aircraft was carried

out using the equations developed in Section I. The results of these

calculations for the Vertol 76 are shown in Figure 12. Typical roots

for an airplane and hovering helicopter are also shown. These re-

sults serve only as an indication of how the roots vary with tilt

angle and should not be thought of as giving an accurate picture of

the stability of the Vertol 76 since the effects of the fuselage

were omitted from the calculations and a large number of simplifying

assumptions were made in order that approximate results might be ob-

tained without recourse to experimental data.

In the discusssion which follows the effect of the important

stability derivatives will be considered as well as the effect of

various physical parameters on these derivatives. Whenever possible,

root locus plots are used to show the effect of increasing or de-

creasing the value of the important derivatives starting from the

valu* which was estimated for the sample aircraft.

From Figure 12 we see that the hovering roots are quite similar

to those of the typical hovering helicopter shown; i.e., there is an

unstable oscillation and a real convergence. The oscillation for the

hovering VTOL doubles amplitude in about 1.5 seconds while the heli-

copter takes 3.5 seconds to double amplitude. According to the
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criteria of A'Harrah and Kwiatkowski which is shown in Figure 12, the

VTOL is unflyable in hovering while the helicopter roots shown fall

into the acceptable region. It will be noticed that the damping

ratios of the two oscillations are nearly the same. It thus appears

that in this regime damping ratio is not a significant measure of

the handling qualities.

The real convergence shown for the VTOL is quite rapid, having

a time to half amplitude of only 0.5 seconds. This is seen to be

considerably more rapid than the helicopter.

It is interesting to see how these hovering roots may be altered

by changing the various derivatives which appear in the coefficients

of the cubic equation which determines the roots. The constant coef-

ficient of the hovering cubic is,

Crnw CmQM (229)

Since OXG is always negative, the static stability is determined

by the sign of the derivative C - . The following root locus

sketch for variation of M shows how the stability characteristics

of the aircraft change as this derivative is changed:
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We see from this diagram that although the time to reach half

amplitude of the aperiodic mode is decreased by increasing the static

stability, the time to double amplitude of the oscillation is also

decreased. Thus, making the aircraft statically more stable makes

it dynamically more unstable. Decreasing the static stability has

just the opposite effect. The dyvamic stability improves until it

reaches the real axis where the roots combine to give two real con-

vergences, one of which soon becomes unstable. The point at which

it crosses the axis is where Or,,,- c •

Probably the most important derivative in the determination of

the stability characteristics of the hovering VTOL is the pitch

damping M-e . The next sketch shows how the cubic roots are

effected by variation of this derivative:

T14

We see from this that a definite improvement in the hovering

roots can be obtained by increasing the pitch damping. The time

to half amplitude of the real convergence is further decreased
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while at the same time the damping characteristics of the oscillation

are improved. This derivative in bovering is mainly due to the offset

hinges of the rotor and can be increased by increasing the amount of

offset.

The effect of changing the moment of inertia about the Y-axis is

shown below:

Increasing the moment of inertia causes all of the roots to move

toward the origin. By comparing this sketch with Figure 12 we see

that increasing the moment of inertia of the VTOL a sufficient amount

makes them quite similar to those of the hovering helicopter shown in

the drawing.

We now consider what happens as the wing is tilted forward from

the hovering position. The first fact which can be noticed from an

examination of Figure 12 is that the stability characteristics change

quite rapidly as the aircraft begins to move forward. This is due to
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the fact that as soon as the aircraft has some forward velocity the

tail has an important effect on the derivatives whereas in hovering

it had practically no effect at all.

With ten degrees of tilt angle the short period oscillation

changes period only slightly, but the damping characteristics are

improved considerably. As the wing is tilted down another 10 degrees

the real part of the root changes from positive to negative while

the period decreases to about four seconds.

It is worth mentioning here that there is no definite reason

why the loci sketched through the points in Figure 12 should be

drawn as they are. Thus, it is possible that the mode which becomes

similar to the airplane short period could be associated with the

mode which is represented by the two real convergences near hovering.

Thus, the locus through the roots could appear as in the following

sketch:
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The dotted lines show where the locus was drawn in Figure 12. Which

of these lines is correct could be determined by computing the roots

for several more values of the tilt angle between 65 and 75 degrees.

As, however, this has not yet been done, we will assume in the follow-

ing discussion that the locus is as shown in Figure 12.

When the aircraft attains some forward velocity the Z-force e-

quation is no longer uncoupled from the X-force and pitching moment

equations and there are then four roots rather than three. The

fourth root was, of course, present in hovering but it was not neces-

sary to compute it since it is uncoupled from the others and is a

very large negative root and thus has little effect on the motion of

the aircraft.

As the aircraft gains some velocity this root moves in along the

real axis and, as shown by Figure 12, combines with the other real

convergent root to form a long period damped oscillation which be-

comes more lightly damped as the wing tilts further forward. Between

70 and 65 degrees this oscillation again becomes two real roots, one

of which becomes unstable. We thus see that a rather radical change

takes place in both of the characteristic modes at a tilt angle of

about 65 degrees. This is due to the fact that the wing stalls at

this point in the conversion.

At this point it is useful to see what happened to the equation

to cause the stability characteristics to deteriorate so badly. To do

this we consider the roots for a tilt angle of 65 degrees given in

Figure 12 and use the root locus plot to determine what changes in the

static and maneuver margin would be necessary to obtain satisfactory

or at least improved stability characteristics at this tilt angle.
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For this tilt angle we have a dynamically stable oscillation

and two real roots, one of which decreases to half amplitude in 2.8

seconds while the other doubles amplitude in 2.3 seconds. In order

to obtain satisfactory flying qualities, the divergent root should

be removed or at least moved much closer to the origin, i.e. the time

required to double amplitude should be increased. As the damping is

only marginal, it should be increased.

In Figure 14 we see the effect of changing the static margin.

The gains shown on this locus are not for changes in the static

margin but for - CX G/A times the static margin; where A is

the coefficient of the /N term in the quartic equation in

If (SM) is decreased to zero the two real roots come together. For

further decrease in (SM) the roots leave the real axis to form a

slght Y unstable oscillation with a time to double amplitude of about

17 seconds. For this amount of change in (SM) we see that the short

period oscillation is hardly effected at all. Further decrease in

the static stability causes the period of both oscillations to de-

crease. One of the oscillations becomes more unstable while the

other becomes more stable. We thus see that making the aircraft

statically stable improves its characteristics but that too much

static stability is undesirable since it results in a very short-

period divergent oscillation. We may also note that no amount of

change in the static stability alone will make the stability charac-

teristics completely satisfactory, i.e. make both modes both stati-

cally and dynamically stable with a desirable damping ratio.
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In Figure 15 is shown the result of changing (MM). As (MM) is

increased the real divergence moves closer to the origin; however,

as may be seen from the values of the gain shown, large gain changes

result in only a small movement while the period of'the short-period

mode decreases rapidly with increase in the gain. Since the real

part of the oscillatory root hardly changes, the damping ratio is de-

creased. Decreasing (MM), while it improves the damping ratio of the

short-period mode, decreases the time to double amplitude of the real

divergence and thus is not a desirable change. We thus see that

little if any improvement can be obtained by changing (MM).

Figure 16 shows the effect of changing CMa , which appears

in both (SM) and (MM). Decreasing Ca (increasing ICmod )

decreases the period of the short-period mode and has little effect

on the real roots. We see however that increasing (vnd improves

the stability characteristics considerably. If it is increased

enough to make the aircraft statically stable, then there will be a

long-period oscillation with a time to double amplitude of about 10

seconds. This amount of change in CM0\ also improves the short

period oscillation since the damping ratio is increased considerably.

According to this root locus, if the value of Cr were increased

from -.439 to about -.14 the stability characteristics would be con-

siderably improved. It must be realized, however, that changing

C2MO in this manner improves the stability only because the wing

is stalled at this tilt angle. The derivative appears in the

static margin multiplied by Q|\ which is almost always negative

when the wing is not stalled. When the wing i. stalled it can be
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positive as it is in this case. This makes the effect on the (SM)

of changing Cmt just the opposite of what it would be for an

unstable wing. For all considerations such as these it should be

remembered that the conditions at which the wing will stall can not

be predicted accurately in the power-on case. The wing was assumed

to obey the power off lift curve shown in Figure 39 but a number of

effects are present which may cause-the stall to occur at a different

effective angle of attack.

As the wing is tilted further forward from 65 degrees, the

effective angle of attack becomes still greater and the wing remains

stalled. Figure 18 shows how the effective angle of attack varies

through the conversion. This chart may be used to quickly find the

effective angle of attack at any tilt angle if the forward velocity

and the thrust coefficient are known. As may be seen by this chart

the angle of attack increases with increase in the velocity and de-

creases with increase in the thrust coefficient. As a consequence

of this fact, the effective angles of attack will be lower for an

accelerating aircraft and higher for a decelerating aircraft. The

sample conversion shown on this chart is for equilibrium trim con-

ditions, i.e. the trim conditions were computed at each tilt angle

as if the airplane were in equilibrium flight at this tilt angle.

In Figure 19 is shown a plot of effective angle of attack versus

tilt angle for different amounts of acceleration and deceleration.

We see from this that even small amounts of acceleration and deceler-

ation can change the angle of attack considerably. Also note that
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the tilt angle at which the maximum angle of attack is attained in-

creases for a decelerating aircraft and decreases for an accelerating

aircraft. We also see that for this particular aircraft, an acceler-

ation of about 0.2 g is required in order for the wing to be unstalled

over the entire conversion.

The lift coefficients obtained using angles of attack obtained

in this way and the power off lift curve slope should not be expected

to be too accurate due to the assumptions which have been made. The

following three effects have been found experimentally to be present

in the slipstream (Ref. 4) and may cause the lift developed to differ

somewhat from that predicted on the basis of simplifying assumptions:

1. Slipstream rotation.

2. Delayed stall due to an effective boundary layer control.

3. Variation in induced velocity across disc.

Brenkmann concludes that for prediction of the average lift on the

wing the delayed stall effect is the most important and that potential

flow solutions may give satisfactory results if this additional lift

is taken into account. He also shows that for the wing-propeller

combination which he tested, slender-body theory (See Ref. 5) predicts

the lift very well if the contribution due to the delayed stall is

added to that given by the theory.

As the tilt angle decreases further we see that the period of

the short-period mode decreases with essentially no change in the

time of half amplitude. This means, however, that the damping ratio

..of the mode is decreased. The period of this mode thus changes from

4.2 seconds at a tilt angle of 65 degrees to 2.2 seconds at a tilt
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angle of 15 degrees. According to the boundaries established by

means of an F-94, (Ref. 16) the damping of this mode is still not

sufficient, although it is not too far from the acceptable boundary.

With further decrease in the tilt angle the other mode comes

back to the real axis, giving for a tilt angle of 65 degrees a pure

divergence. With further decrease the time to double amplitude of

the divergent mode at first becomes shorter and then longer again.

We see that these roots remain on the real axis essentially until

the angle of attack becomes small enough for the wing to become un-

stalled.

We now consider how the roots in this region will be effected

by variation in (SM) and (MM) as we did before for a tilt angle of

65 degrees. In this case as a representative angle we will use a

tilt angle of 35 degrees.

In Figure 17 we see the results of changing (SM) starting from

a tilt angle of 35 degrees. As it is decreased the two real roots

move together, the divergent root meeting the imaginary axis when

(SM) becomes zero. As (SM) is further decreased the two roots leave

the real axis to form a stable oscillation. We note that although

the roots to begin with are quite similar to those in the 65 degree

tilt angle case, the oscillation here is convergent whereas in the

other case it was slightly unstable. For gain sufficient to keep

this mode from crossing back over the imaginary axis the short-period

mode has moved only a small distance and in the direction of increased

damping. We then see that for this tilt angle, giving the aircraft an

78



adequate amount of static stability makes the period and damping of

both modes acceptable.

Changing (MM) for this tilt angle is almost the same as for the

65 degree tilt angle and is thus not shown.

In Figure 20 we see the effect of changing C- O? , the deriva-

tive of the pitching moment with respect to angle of attack for constant

velocity. We see that decreasing CHcA has almost no effect on the

two real roots since the zeros for this root locus are located almost

On these poles. The period of the short-period mode is decreased with

almost no change in time to half amplitude for a decrease in CMCo

Increasing OHO is somewhat more interesting. The real divergent

root moves toward the imaginary axis and the real convergent root de-

creases its time to half amplitude. We see however by comparing the

gains on the -two loci that a C increase sufficient to make the

divergent mode stable causes a very large movement of the short-period

mode. In fact at about the same gain where the one mode makes the air-

craft statically stable, the other mode becomes dynamically unstable.

Thus, changing Ch 4 can improve the dynamic characteristics for this

tilt angle somewhat although it will not make them satisfactory.

Finally, going back to Figure 12, we see what happens to the two

modes when the tilt angle becomes small enough to unstall the wing.

In this case the tilt angle is approximately equal to the effective

angle of attack. The angle of attack in normal forward flight is about

7-degrees and this tilt angle is shown in the diagram. The damping of

the short period mode decreases considerably without much change in

the period and the two real. roots form a long period oscillation
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similar to the usual phugoid. The aircraft in forward flight then has

acceptable, although not ideal, stability characteristics.

Effect of Physical Parameters

In the last section we saw how the quartic roots varied as the

tilt angle was changed for a typical tilt-wing VTOL aircraft. It was

also shown by means of root locus plots how the stability character-

istics at several tilt angles would be changed if the values of the

two groups of terms, (SM) and (MM), were changed. We would now like

to see how the various derivatives which make up these two groups de-

pend on the aircraft physical parameters.

In our original perturbaticn equations, there were 18 deriva-

tives. Six of these were found to be either zero or negligibly small.

Of the remaining derivatives, five, , 9 9, X G ;, e ,

CZt , depend essentially on only the mass, moment of inertia, and

forward velocity. Two of these derivatives, C, , also

have small contributions from the tail and other parts of the aircraft,

but these are small compared to the inertia contributions. Thus we

will be mainly interested in the derivatives of the forces and moment

with respect to angle of attack and free stream velocity and the pitch

damping derivative CM 6 . All of these seven derivatives depend

rather strongly on the easily alterable physical parameters of the air-

craft and are thus of greatest interest.

Consider first the pitch damping. This derivative is mainly due

to the tail although, as will be seen, the rotor can also be quite

important. The fuselage also contributes some pitch damping but this

can not be expressed in analytical form for fuselages of unusual shape
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and must therefore be determined experimentally for a particular con-

figuration. Also, the pitch damping of the fuselage is usually quite

small compared to that from the other parts of the aircraft.

The contributions to the pitch damping as a function of the rotor

angle of attack are shown in Figure 21. We see that the largest con-

tribution here is that of the horizontal stabilizer. This contri-

bution is simply a result of the fact that when the aircraft is pitch-

ing at a rate 6 , the angle of attack atthe tail is increased by an

amount A. , producing a moment which opposes the pitch rate. This

moment is thus directly proportional to the distance from the center

of gravity to the tail and to the velocity of the fluid at the tail.

The contribution of the offset hinges is seen to be independent of

the angle of attack and thus of the free stream velocity. It is for

this reason that this contribution is particularly important. Al-

though it is small compared to the tail contribution in forward flight,

it is almost the only source of damping in hovering. This contri-

bution is directly proportional to the amount of hinge offset. We

can see how this moment arises in the following way:

Consider the side view of a two bladed rotor with a mean coning

angle co and a flapping angle CL 1 (See Fig. 7)-

CFz

A 0
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The moments about points A & B due to the lift on the rotor and the

centrifugal force must balance since the blades are hinged at these

paints. Thus,

,q2 ~ 2 Fz, AAA) CF =O (230)

and

C a- 0Fl (231)

since 3 is small. The force FM produces a moment about point

0 due to the offset e. The moment due to the two blades is thus,

k\o 0-1 ACF( L (232)

Thus, a moment is produced which is proportional to G.Dj . When the
S

aircraft is rotated at a rate b about its center of gravity the

rotor can not retain its former position since it is hinged and can

only be moved by aerodynamic forces. The rotor thus lags behind

producing an effective change in OLI of magnitude,

AcLL- a-L) (233)

We thus have,

(0 )(234)

In the actual case the rotors are moving and these forces must be

averaged over the rotation angle Y as was done previously. The

simple considerations above show, however, the source of the velocity

independent moment.
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The contribution of the tail fan although non-flapping is also

independent of the velocity and is very small due to the smallness

of this rotor.

The contribution of the rotor forces are particularly inter-

esting due to the fact that above a certain velocity the H-force

actually contributes a "negative damping" force. This phenomenon

can be explained in the following way: When the aircraft is pitching

at a given rate, the rotor lags behind its position for the non-

pitching rotor as mentioned previously. Due to this lage the blades

on one side of the rotor are flapping up and on the other side are

flapping down. The velocity components due to this flapping causes

the angle of attack of the blades to differ on the two sides and

hence to change the magnitude and direction of the local lift vector.

When the inflow is small, the change in direction is greater than the

magnitude change and results in an H-force change which opposes the

pitch rate. However, when the inflow becomes sufficiently large,

the magnitude change, which is in the opposite direction, is the

greatest and the H-force change tends to aid the pitch rate. The

pitch damping due to thrust change is then positive. This effect is

illustrated in Figure 22.

We see that the pitch damping can be increased by increasing the

tail size and the amount of flapping hinge offset, and. that there

exists a destabilizing contribution to the pitch damping which in-

creases with the inflow ratio.

Consider next the moment resulting from an angle of attack change

at constant velocity. The important contributions to this derivative
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are shown in Figure 23. We see that the largest contribution here

is definitely that due to the change in angle of attack of the tail

and it depends on the distance between the aircraft center of gravity

and the tail and on the fluid velocity at the tail. All of the other

contributions are small but destabilizing except that of the wing

Z-force. This, however, is due to the fact that the wing is stalled.

If the wing is not stalled throughout the transition, all contri-

butions to this derivative except the tail are always destabilizing.

When the wing is not stalled there is a center of gravity position

at which the wing and rotor contribution cancel that of the tail.

The center of gravity range is thus decreased due to the destabili-

zing contributions of the rotor.

We must remember, however, that positive Cm does not neces-

sarily mean static instability as is usually the case with conventional

airplanes. For the VTOL the static stability is determined by the

sign of,

(SM)= C-AC (I> - Cz-\l CMO0( (235)

and the first term may be of equal or greater importance than the

second. The relative magnitude of these two terms as a function of

rotor angle of attack is shown in Figure 24. From this plot we see

that near hovering both terms are stabilizing. At about 20 degrees

the wing stalls and both terms change sign and become destabili-

zing. The eM\ term is then very small up to about 80 degrees

while the C o term is destabilizing in this region. At about

83 degrees both terms again become stabilizing. Thus, we see that
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the derivative V-M\/ is quite important near hovering and in

forward flight.

The important contributions to CM are shown in Figure 25.

The major contribution in hovering is the wing force in the X-direction.

This derivative is mainly due to the change in the lift of the wing

in the slipstream since the wing is in a nearly vertical position.

It owes its magnitude to the fact that there is considerable verti-

cal separation between the wing center of pressure and the center of

gravity of the aircraft, which is not present in a conventional air-

plane. When the angle of attack is high enough, however, the wing

stalls and this contribution becomes small and of opposite sign. The

two rotor terms we see depend on the relative position of the rotor

and the aircraft center of gravity. The overall effect of the rotor

is to give a small positive contribution to O"\/ which increases

in magnitude as the wing is tilted down.

Positive CmV usually increases the static stability since

C O is always negative for a non-stalled wing and (SM) is nega-

tive for static stability. The following shows how the signs of the

derivatives effect (SM),

Usual sign May change sign for stalled Always negative
for unstalled. wing. if tail is suf-
wing. ficiently large.
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We see from this that if wing stall causes 3V to change

sign, this will give a destabilizing contribution. If both e

and (2" change the contribution will still be stabilizing while

if either changes sign while the other does not, the contribution

will be destabilizing.

In Figure 26 we see the contributions to C7- , the change

in force in the Z-direction with angle of attack at constant velocity.

In a conventional aircraft, if the tail lift is neglected, this deriva-

tive is just the slope of the wing lift curve. Here we see that while

the effect of the wing is still important, the rotor also gives a

large contribution. Although the stalled wing gives a large positive

contribution, the negative contributions of the rotor and the tail

are almost sufficient to keep this derivative negative throughout

conversion. The tail contribution is simply due to the change in

tail lift with angle of attack and hence is proportional to the dy-

namic pressure at the tail. The triangular shape of the rotor contri-

bution can be explained as follows: If the angle of attack is

slightly changed, this effects the inflow to the rotor, , and

hence the thrust. Thus, near hovering there is little contribution

to Q since the rotor is nearly parallel to the flow and the

inflow is hardly effected by a small angle of attack change. In for-

ward flight, on the other hand, the thrust vector is almost parallel

to the flow and the thrust force is in the X-direction and does not

effect C . Since both these effects vary approximately linearly

with tilt angle, the rotor will have a maximum Z-force change with

angle of attack at a tilt angle of about 45 degrees.

86



The other derivative which appears in (SM) is ,kA , the

change in Z-force with velocity at constant angle of attack. This

derivative has a contribution from the rotor and from the wing.

These are shown in Figure 27. As mentioned before, this derivative

is usually negative for an unstalled wing. However, we see that the

rotor contribution is positive and fairly large and hence could be

large enough to make 07_t \/ positive even for an unstalled wing.

The rotor term arises from the fact that if the velocity in-

creases at constant angle of attack the inflow to the rotor is in-

creased, decreasing the angle of attack of the rotor blades and de-

creasing the thrust. The thrust decrease becomes greater as the wing

is tilted down and the freestream velocity has a greater component

perpendicular to the rotor disc. Near the forward flight position

the thrust is mostly in the X-direction and the contribution to C'7

is decreased.

The wing contribution here depends on wing angle of attack and

becomes positive or destabilizing when the wing stalls.

Consider now how the derivatives we have discussed effect the

maneuver margin. The signs of the various contributions are shown

by the.following:

(w) - C -) C..,- - (-

Usual sign May change Always same sign.
for unstalled sign for
wing. stalled wing.
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We see from this that the wing stall can make the first term decrease

the value of (MM). An increase in the magnitude of all the other

terms tends to increase (MM). The importance of (MM) can be seen

from the short period approximation given earlier,

- ~ \J(236)

where (MM) in this expression is not made non-dimensional. From

this we see that increasing (MM), decreases the period of the short

period mode as was also shown by the root locus plots in the previous

section.

We will consider now the two X-force derivatives. These deriva-

tives do not appear in either (SM) or (MM) and do not effect the

stability characteristics as much as those derivatives already dis-

cussed.

The change in the force in the X-direction with an increase in

angle of attack is normally negative, i..e. if the angle of attack is

increased, a force is produced which tends to oppose the motion of the

aircraft. The contributions to this derivative are shown in Figure 28.

The tail contribution, as would be expected, is small, negative and

increases in proportion to the velocity. The rotor contribution is

positive and is given approximately by US L.t4- Lw

Thus, an increase in angle of attack causes an increased inflow which

increases the thrust, producing a positive force in the X-direction.

The effect of the thrust increase becomes greater as the wing is

tilted forward. The various terms in the wing contribution are shown
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in the upper part of this Figure. We see that the biggest term

is that involving a change in the angle of attack, i.e. ( )

rather than a change in the magnitude of the resultant velocity.

The fact that the wing is stalled decreases the value of this contri-

bution but the term involving the lift coefficient is larger at small

tilt angles, and the stalled wing has only a small effect on the con-

tributioA. The sum of the various contributions is negative as in a

normal aircraft and its magnitude increases as the tilt angle decreases.

The X-force change with velocity is also normally negative since

a velocity increase will usually produce a force tending to oppose

the motion of the aircraft. The rotor contribution to the derivative

is always negative and approximately proportional to 05C W

Z is always negative, i.e. an increase in the freestream ve-

locity produces a decrease in the inflow to the rotor. This causes

a decrease in the thrust and hence a force in the negative X-direction.

The effect of this thrust decrease increases as the tilt angle is de-

creased. This is shown in Figure 29.

The various terms in the wing contribution are also shown in this

Figure. Again the main effect is the change in angle of attack rather

than the change in the magnitude of the resultant velocity. The sharp

drop at about 70 degrees is due to wing stall. The sum of the wing

and rotor contributions has a dip at about 70 degrees since the nega-

tive rotor term is still small at this tilt angle.
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CONCLUSIONS

1. Values for the derivatives of the resultant velocity and

effective angle of attack with respect to forward velocity and air-

craft angle of attack can be obtained from general charts without

extensive calculations.

2. Typical tilt wing VT@L has a short period mode whose period

becomes smaller as the tilt angle is decreased. The time to half

amplitude of this mode is approximately equal to a constant times

the pitching moment of inertia divided by the pitch damping. The

other mode is a long period oscillation which becomes a pure con-

vergence and a pure divergence when the wing stalls.

3. For unaccelerated level flight the wing stalls over part

of the transition. The amount of stall is decreased by acceleration

or climb and increases by deceleration or descent.

4. The aircraft very quickly becomes statically unstable when

the wing stalls.

RECOWMATIONS FOR FURTHER STUDY

In order to gain a better understanding of VTOL dynamics, it is

necessary that more experimental work be done. Detailed analytical

analysis are not particularly useful if it cannot be determined

whether or not they accurately represent the physical situation. Two

types of experimental work are needed. First, it would be desirable

to have accurate measurements of the forces on the wing due to the

slipstream in order to determine what parameters of a rotor wing
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combination effect the lift oaboacteristics. Also, dynamic stability

information is needed to determine whether oi not present theoretical

treatments give an accurate description of VTOL dynamic characteristics.

A theoretical treatwnt of the dynamics of a complete transition

with time-vvxying stability derivatives would also be valuable since

this type of analysis might differ considerably from the steady state

a.elysis if the acceleration is alfficiently high.
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APPENDICES

A. Inflow Ratio and Induced Velocity Derivatives

In this section we will give expressions for the derivatives of

, the inflow ratio, and kT , the induced velocity, with respect

to cG , M)< , and CT . These expressions are also plotted in

the form of charts in Figures 30 through 37. The H-force coefficient

derivatives which were derived earlier are plotted in Figure 38.

The inflow ratio in the slipstream is determined as follows:

Thus, 
/A

-T-O A-2

This expression is plotted in Figure 30.

The , derivatives were given in Reference 12. The expressions

for these derivatives will be sunmmarized here and are plotted in

Figures 33-37.

Using equation (5) and noting that (See Figure 1),

A-

(where \/R here is the resultant velocity at the rotor plane and

not at the wing center of pressure), we easily obtain the following

expression for >.

CT A-4
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Since this equation is of fourth degree in it is desirable to

plot it in such a manner that can be determined if ,C

and CT are known. Dividing the equation by > o= - '

gives,

I
AA-5

where V c, 7 s ' /> >oCT

This expression is plotted in Figure 37.

From the definition of we obtain,

- ~ ~ A-6

This is plotted in Figure 33.

Using the definition of > the following expressions can easily

be obtained for the derivatives:

3A-7

4 - C & * +A -8

+ A-9
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Using the charts for these derivatives the induced velocity

derivatives can easily be formed from the following expressions:

__ A-10

w o .. j) C. | - ( A-11
ZSR \O

These are plotted in Figures 31 and 32. The derivative 6V

differs from by only a constant and can thus be found

from the chart for (Figure 34).

B. Values of physical parameters for Vertol 76 (Full scale; model
scale factor: 5.2)

b4 = 2

0-p = .572 ft.

= .075 ft.

= 2.593 ft.

= 1.17 ft.

r" = 0.3025 ft.

Q( = 0.238 ft.

= 1.08 slug

p = .002374 slug

£2 : 702 ft/sec

CW = 4.75 ft.

= 5.73

= 0.218

SS = 90.4 ft2 (wing area in slipstream)
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SW = 24.3 ft 2 (wing aret, outside slipstream)

'IT ARC = 9. 88

<T = 4.29 x 105

CDOr = 1

CH Wcu = - 0.1

O-W = 4.5

Km,:= 1. 6 x10

R = 4.7~5 ft.

ST = 20.ft 2 (area of horizontal tail)

= 20 ft2 (fuselage equivalent flat plate area)

W = 3160 lbs.

S = 0.0087~

= 12.5 ft.

VT = 5.4 ft.

OT = 3 ft. (tail chord)

L-T = 20

-1 = 1872 (average over all Lw values)

= 1885

= 1858

?S (main rotor)'= 3.28

~'(tail rotor) = 2.0

fnTRmass of tail rotor blade = .005 slug

-SL (tail rotor) = 406 rad/sec

RT = 1.0 ft. (radius of tail rotor)

CRrT = .25 ft. (tail rotor chord)

mass main rotor blade = 0.455 slug
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G-T = 3.7 (tail lift curve slope)

-RT = 5 (tail rotor blade lift curve slope)

C. Determination of Value for K from Experimental Data

A tilt-wing VTOL aircraft will not hover with the rotor exactly

vertical since the lift force on the wing due to the slipstream

produces a force acting in the negative X-direction. Thus for hover-

ing the wing must be tilted forward by an amount such that the com-

ponent of the wing lift in the X-direction. Since the wing lift is a

function of the arbitrary parameter K, K can be determined if it is

Imown at what wing tilt angle the full scale aircraft or a model of it

will hover.

When the aircraft is hovering, the wing drag is parallel to the

thrust and the lift is perpendicular to it. Thus we have,

T D c-1

where 0(0 - qO - WO is the hovering rotor angle of

attack.

Expressing T, L, and D in terms of coefficients

\/f Ci- R~ L C 00 C,- pVX1Ado C-2

is given by,
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Substituting this into the above expression and solving for K we

obtain

ta r (9o - E c-4

Using values from appendix B and D gives,

:3- .S-7 C-5

The model of the Vertol 76 tested at the Princeton University

0
Forward Flight Facility was found to hover at o O or

0

62o 3 Thus,
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